LODDO: Using Linked Open Data Description Overlap to Measure Semantic Relatedness between Named Entities

نویسندگان

  • Wenlei Zhou
  • Haofen Wang
  • Jiansong Chao
  • Weinan Zhang
  • Yong Yu
چکیده

Measuring semantic relatedness plays an important role in information retrieval and Natural Language Processing. However, little attention has been paid to measuring semantic relatedness between named entities, which is also very significant. As the existing knowledge based approaches have the entity coverage issue and the statistical based approaches have unreliable result to low frequent entities, we propose a more comprehensive approach by leveraging Linked Open Data (LOD) to solve these problems. LOD consists of lots of data sources from different domains and provides rich a priori knowledge about the entities in the world. By exploiting the semantic associations in LOD, we propose a novel algorithm, called LODDO, to measure the semantic relatedness between named entities. The experimental results show the high performance and robustness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Path-Based Semantic Relatedness on Linked Data and Its Use to Word and Entity Disambiguation

Semantic relatedness and disambiguation are fundamental problems for linking text documents to the Web of Data. There are many approaches dealing with both problems but most of them rely on word or concept distribution over Wikipedia. They are therefore not applicable to concepts that do not have a rich textual description. In this paper, we show that semantic relatedness can also be accurately...

متن کامل

Automatic Semantic Web Annotation of Named Entities

This paper describes a method to perform automated semantic annotation of named entities contained in large corpora. The semantic annotation is made in the context of the Semantic Web. The method is based on an algorithm that compares the set of words that appear before and after the name entity with the content of Wikipedia articles, and identifies the more relevant one by means of a similarit...

متن کامل

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Determining similarity of scientific entities in annotation datasets

Linked Open Data initiatives have made available a diversity of scientific collections where scientists have annotated entities in the datasets with controlled vocabulary terms from ontologies. Annotations encode scientific knowledge, which is captured in annotation datasets. Determining relatedness between annotated entities becomes a building block for pattern mining, e.g. identifying drug-dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011